随梦书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

周海从旁边拖了把椅子坐过来,准备和徐川交流一下这方面东西。

没错,就是交流,而不是指点。

在他看来,能够研究弱weyl-berry猜想分支问题的徐川的数学能力已经达到了一定的境界了。

“weyl-berry猜想的源头来源于1966年的数学家马克·卡克,他在当年的一次讲座上,提出了一个留名科学史的问题:‘有人能从声音听出一面鼓的形状吗?’”

“通过声音来听出鼓的形状?这也能做到?”徐川身边,一名凑过来旁听的同学好奇的问道。

周海笑了笑,并未介意学生打断自己的说话,大学和初高中是两种完全不同的学习环境。

在大学中,有些老师除了上课时传授知识外,也经常会和学生聊天。

毕竟学生年轻,对问题的思考有时候会很特别,会带来让人意外的惊喜。

而且通过一些故事来促使学生对某个领域的好奇,让其进入学习状态远比你强塞知识给他更有用,这样的教学方式也更符合大学。

“从数学的角度来说,把一个膜拉伸套在一个刚性支架上,这样就形成了一张二维的鼓。”

“不同形状的鼓在敲击时会产生不同频率的声波,因此会产生不同的声音。”

“通过这些不同的声音,的确可以做到确定鼓的形状。”

“这涉及到阿兰·康纳斯和沃尔特·范·苏伊莱科姆两位数学家的研究。”

“他们扩展了非对易几何的传统框架,以处理几何空间的谱截断和在有限分辨率下提供几何空间的粗粒度近似的公差关系.....,并且利用了圆的谱截断为算子系统定义了一个传播数,且证明了它在稳定等价下是一个不变量,并且可以用于比较同一空间的近似。”

“而在这种框架下,通过波动方程我们能描述‘鼓’在被敲响时的振动,同时因为‘鼓面’的边缘牢牢地贴在刚性的架子上,我们可以认为波动方程的边界条件是狄利克雷边界条件。”

“有了这两块的数据,再通过扩散方程等方法,我们就能通过鼓发出的声音来计算出它的形状,哪怕你没有见过它。”

周海笑着解释了一下,却直接说懵了凑过来听热闹的学生。

几何空间的谱截断是什么东东?圆的谱截断又是啥米?

听声辨位他们都知道是什么意思,但是听声辨形状,这听都没听说过。

数学真的能做到的这种地步吗?它不是玄学啊!

掐指一算就能知道发生了什么,这也太离谱了亿点点吧?

倒是徐川,大抵明白了周海的意思。

所谓的“听鼓辨形”,其实就是拉普拉斯算子在一个区域内的本征值问题。

要通过数学进行‘听鼓辨形’,关系到另外一个概念。

那就是‘扩散想象’。

我们都知道,如果将一滴墨水滴入清水中,墨水会随着时间扩散。

这就是扩散现象。

随着时间的推移,物质会自发地从浓度高的地方往浓度低的地方进行扩散,不管是所谓的‘有形’还是‘无形’,都会有这种现象。

比如你将一块铜和一块铁互相压在一起,过一段时间后,通过仪器检测,你会发现铁的表面有铜,铜的表面有铁,这同样属于扩散,只不过过程相当缓慢而已。

声音也一样。

而一面鼓发出的声音,在明确了狄利克雷边界条件和振动初始条件后,再带入时间与扩散方程,的确是可以计算出来这面鼓的形状与大小的。

数学就是这么神奇,常人觉得不可思议甚至是玄学的事情,在数学中却是可以一步步给你计算出来的。

.......

通过周海教授的讲解,徐川大抵明白了所谓的椭圆算子的谱渐近以及韦尔–贝里(weyl-berry)猜想到底是怎么一回事了。

简单的来说,就是你可以将之前的‘听声辨鼓形’看到二维的韦尔–贝里(weyl-berry)猜想。

过去的数学家已经证实了这个,但并未证实三维或者更复杂条件下的韦尔–贝里(weyl-berry)猜想。

现在的需求是数学家能不能找到一个分形框架,让三维或更复杂的weyl-berry猜想在此分形框架下成立,并且可以让?Ω在这个分形框架下是可测。

目的就是这个。

至于证实了这玩意后具体能有什么用?

大概研究宇宙中的星体形状和宇宙大小能用上吧,至于其他的,能实用上这项猜想的目前来说应该是没了。

不过数学嘛,说实话,现代的数学离“有用”这个概念其实已经非常遥远了。

如果一个人不是自己对数学有强大的,内在的兴趣,似乎很难解决“我为什么要研究数学”这个问题。

上世纪被誉为‘全能物理学家’的理查德·费曼年轻时,曾经考虑选数学专业。

但当他去数学系咨询时,问了一句话,“学数学有什么用?”。

然后数学系的老教授告诉他,既然你问这个问题的话,那么你不属于这里,你不属于数学系。

再然后,这位大佬就跑去学物理了。

如今我们人尽皆知的‘纳米’这个距离单位,就是他提出来的。

数学是纯粹抽象的产物,定义和逻辑是构成数学体系的基石。

数学家通常并不关心数学的概念与推导与现实世界有何联系;数学上的结论也未必能够在真实世界中找到原型。

不过随着科技与社会的发展,一些原先被认为没有实际意义的结果也会变得有意义。

譬如上辈子他研究过的“反物质”,就与如今看起来没有丝毫用处的二次方程负根之间具有一定联系。

这就像你学了微积分,但平常买菜根本就用不上它而觉得它没用一样。

历史名人康熙也问过微积分到底有什么用这个问题。

后来,他大概觉得‘自己擒鳌拜,平三藩,收ww,九王夺嫡,治理黄河,撰八股文,耕种庄稼’没一条需要用到到微积分的,所以就觉得不必推广了。

然而随着时间的推移,微积分学的发展与应用几乎影响了现代生活的所有领域。

大到现代化的导弹飞行计算、小到你吃颗感冒药,都需要用到微积分。

因为通过药物在体内的衰退规律,微积分可以推导出服药规律时间。

所以别说数学没用了,数学没用的话,你连药都吃不准时间。

......

随梦书屋推荐阅读:商先生今天也想公开正经人谁在漫威学魔法啊末世当地主阴阳秘录7号基地塔防游戏:我的永生之国空间异能:末世重生后她又行了火星荒岛求生机遇号末日重生之组团打怪末世我收留美女上司看见弹幕后,末世女配带飞男主摆烂太狠,我被宗门当反面教材了末世:我的关键词比别人多一个星际超越者元宇宙:失落的星球从全能学霸到首席科学家四季末日,我有座无限物资避难所诸天败犬互助群末世重生:会瞬移我白嫖亿万物资搬运末日科技!开局上交可控核聚末世:从触碰妹妹的脚开始末世:囤了千万物资后开始无敌全球末日求生,开局囤积万亿物资女主领便当之后废土之红警3快穿之大佬的心尖机战:超新星主宰漫步在武侠世界异能迷雾之异世大陆漫威,谁把他救出来的?!诡秘灰雾:开局沦为魔女复仇工具血竞天择零元购,我把渣爹老窝一锅端驭房我不止有问心术张余诱吻春夜末日游戏全球降临谁家大佬在线发糖全球冰封,我打造了末日安全别墅重生回到末世一年前,我只想种田我成了血族始祖我在惊悚世界成为恐怖大佬机甲:这个公主有些不正经!末世,抢劫海外天量物资我无敌了神奇宝贝:开局站在白银大会奶龙与贝利亚:宇宙之中的欢笑嫁权臣末世两界倒爷听懂毛茸茸说话,我在末世杀疯了我的天灾小屋美漫之诸天仙武
随梦书屋搜藏榜:末世萌商来袭女汉子系统[末世]王大锤的大电影全球游戏无限入侵末日:开局霸王龙,天赋是双修?机甲狂奔开荒,我选择名刀加复活甲大唐天子末路凯旋泰坦巨兽:从白垩纪开始进化机械毁灭纪元快穿剧情又崩了惊!我在求生游戏,开着五菱宏光追大佬研发不行推演来凑,我能推演科技外来异星我打的都是真实伤害末世废土?不,那是我的菜园子隐龙密语末世:我带领人类走向星辰大海易生变快穿之虐渣攻略星海骑士:无名小卒末世重生之圆满末世之幼龙分身快穿之套路升级记末世:组队就变强我统领万千女神爽爆!大佬在星际嘎嘎乱杀封神了灵境御兽师末世:被困女大宿舍,我为所欲为战乱九荒网游之皎皎如月无限垂钓系统超凡纳米人:星宇之神大力女神穿越抗日战场我在末世有个鱼塘快穿之总有人想攻略我绝美恶雌,开局攻略八位兽夫虫灵战记末世之小冰河我演化了诸天食物链顶端的男人快穿锦鲤运西界封神快穿:男神,许你生生世世文明破晓影视世界暂住者我,后土血裔,轮回诸天超级称号觉醒超人基因的我要无敌了太阳系的流浪者
随梦书屋最新小说:灾后物资成精,我靠封印囤货暴富飘流的空间轮回密钥:双生系统觉醒时空回响:程楠的千年棋局开局火种协定,但我能无限召唤尸潮压境,我的百万雄师杀疯了全球缺氧我有小世界,开局先杀狗男女末世:那就让她们献上忠诚吧铠甲勇士俢罗侠末世下我那短暂的一生黑暗哨向:我的星星自由平等我以饕餮镇诸天噬骸武装末世集结号:D市生存录灾变游戏:我随手普攻,你们却说是禁咒两只蚂蚁闯天下被女神甩后,我在末日当囤货海王离体我,末世列车长,乘务都是绝美女神诡神,杀!末世降临我分手了小仙女弦!正物质宇宙:跨越穿越人造人,我在星海掠夺能源重生神犬:逆天改命系统终焉降临之日,为我救世之时!重生之病毒末世每日一翻倍,从全民暴雨求生开始哨向:从万人嫌苟成万人迷幽谷怨灵我在军校种田虐爆全星际丧尸也怕三刀流全球末世,我躲在庇护所无限抽金词条宿舍求生:给我配校花,我拿校花孵金蛋末世开火车,顺便捡了个机械神格末世之传奇商店星际之农女悠闲生活顶级兽夫太缠人,绝美娇雌想出逃末日列车,我靠囤货亿点点杀疯了时光基站:宇宙女主播的文明编码我在废土肝熵值觊觎平行宇宙的挚友山海纪元:灵契觉醒全民文明进化生存万界灾劫副本,我操盘救世主通关双系统伺候你一人,这福气小得了?人机大战中的末日生活双届孤行公路求生,我的房车是移动别墅智能乱世,我在母系氏族赤身拼搏全能逆袭系统!